J. Membrane Biol. 174, 141-156 (2000) The Journal of

Membrane
Biology

© Springer-Verlag New York Inc. 2000

Polyamine Triggering of Exocytosis inParameciuminvolves an Extracellular
Ca®*/(Polyvalent Cation)-Sensing Receptor, Subplasmalemmal Ca-Store Mobilization and
Store-Operated C&*-Influx via Unspecific Cation Channels

N. Klauke, M.-P. Blanchard, H. Plattner
Faculty of Biology, University of Konstanz, P.O. Box 5560, D-78434 Konstanz, Germany

Received: 30 August 1999/Revised: 1 December 1999

Abstract. The polyamine secretagogue, aminoethyldex-following sequence of events during AED stimulated
tran (AED), causes a cortical [E] transient inPara-  exocytosis: (i) activation of an extracellular €a
meciumcells, as analyzed by fluorochrome imag- polyamine-sensing receptor, (ii) release of°Cérom
ing. Our most essential findings are: (i) Cortical®Ca subplasmalemmal stores, (i) andCanflux via unspe-
signals also occur when AED is applied in presence otific cation channels. All three steps are required to pro-
the fast C4" chelator, BAPTA. (ii) Extracellular L&  duce a steep cortical [€] signal increase to a level
application causes within seconds a rapid, reversibleequired for full exocytosis activation. In addition, we
fluorescence signal whose reversibility can be attributedshow formation of [C&"] microdomains £0.5 um, =33

to a physiological [C&]; transient (while injected 3 msec) upon stimulation.

causes a sustained fluorescence signal). (iii) Simply in-

creasing [C&"], causes a similar rapid, short-lived
[Ca®"]; transient. All these phenomena, (i—iii), are com-
patible with activation of an extracellular “G¥
(polyvalent cation)-sensing receptor” known from some
higher eukaryotic systems, where this sensor (responding:-oquction
to C&*, La®* and some multiply charged cations) is
linked to cortical calcium stores which, thus, are acti-
vated. In Paramecium,such subplasmalemmal stores
(“alveolar sacs”) are physically linked to the cell mem-
brane and they can also be activated by thé'Caleas-
ing agent, 4-chloro-m-cresol, just like in Sarcoplasmic
Reticulum. Since this drug causes a corticaf Gagnal
also in absence of G4 we largely exclude a “C4-

induced C&" release” (CICR) mechanism. Our finding I ive &% ch . % infl
of increased cortical G4 signals after store depletion US€ Voltage sensitive Cachannels. Influx-may

and re-addition of extracellular €acan be explained by cau§e “C%-induced C&' release” (CICR),“or vice versa
a “store-operated Gainflux” (SOC), i.e., a C&" influx Ca&* mobilization from stores may cause “store-operated

C&” influx” (SOC). Another possible feedback mecha-
nism is a current generated by “Carelease-activated

Key words: C&* — Calcium — Exocytosis —Para-
mecium— Secretion

In different systems, G4, a universal regulator of stimu-
lated exocytosis, may originate from influx via €aar-
rying channels and/or from stores, whereby?Caiom

both sources may exert mutual control in different ways.
Variations to this complicated interplay have extensively
been reviewed [2, 5, 6, 8, 15, 54]. Some systems operate
via receptor-activated Gachannels, while some others

superimposing store activation. AED stimulation in
presence of Mf, causes fluorescence quenching in

Fura-2 loaded cells, indicating involvement ofunspecificC.az influx” (Icrac), [62]’ mvo_lvmg inositol 1,4,5-
cation channels. Such channels, known to occur intnsphosphate (Ip formation, while structural or func-

Parameciumshare some general characteristics of SOC:[Ional coupling of stores to plasmalemmiiac-type

+ :
type C&" influx channels. In conclusion, we assume theC& " conductances is not well known. In general, Ca
stores may be of the JP or ryanodine-sensitive type,

although the latter more generally respond to caffeine
- [12], and, even &t100 times lower concentrations, to the
Correspondence ta. Plattner recently described activator, 4-chloro-meta-cresol
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(4CmC, [30, 34, 96]) which in Sarcoplasmic Reticulum Therefore, we had to keep in mind many candidates, like
(SR) also activates mutated €aelease channels of low depolarization- [52, 60], hyperpolarization- [77, 78] and
ryanodine-sensitivity. Another new concept emerging inmechanosensitive € channels [59], as well as €a
Ca* signaling is the existence of extracellular Ca  carrying N& channels [82], and some unspecific cation
(polyvalent cation)-sensing receptors” (CaSR) whichchannels [84]. Detailed reviews are available [31, 44,
sometimes are linked to jPformation. However, re- 51, 75, 76]. Also feasibility of a CaSR-type signal trans-
cently some forms of CaSR have been described whicluction mechanism, as described above, had to be tested
do not involve IR formation for mobilization of C&  in the context of C#' channel candidates in stores and in
from cell membrane-coupled stores [1, 11, 79, 93].  the plasma membrane.

In our work with the ciliated protozoarRarame-
cium tetraurelia,we can now, in conjunction with a se-
ries of new experiments, try to put together the comple>JVIat

pUZZI_e from many details pertlnent_to regulation of e_XO'Strains used were 7S (wildtype), nondischarge strain nd9-28°C [3], and
cytosis of dense-core vesicles (“trichocysts”). In brief, soawn” strain d4-500r [27], all cultivated monoxenically, wiEmtero-

the background is as follows. Trichocysts can be re-acter aerogeneadded, at 25°C (7S and pawn) or 28°C (nd9). 7S and

leased synchronously (80 msec) in great numbers in repawn cells perform exocytosis of almost all of their trichocysts, of

sponse to the polyamine secretagogue, aminoethylde%‘lhic_h [B5% are attached at the_cell surface, in response_to AED [71,
tran, AED,M, = 40 kDa [42, 69, 71, 72]. Though all 72], in contrast to nd9 cells cultivated at the nonpermissive tempera-

. ture of 28°C. Cells were used as indicated in [40, 41], where we
L
trichocysts docked at the cell membrai®§% of all) also described materials used, methods of microinjection, fluoro-

are competent for exocytosis, only¥#0% of all exocy-  chromes, equipment used, manipulation of the extracellular medium,
tosis sites are activated by AED [19, 67] when extracel-alibration and evaluation. As additional materials we used BAPTA,

lular C&* concentration is reduced to levels slightly be- LaCl; and MnC}, each p-A. grade, 4CmC from Fluka (Deisenhofen,

low intracellular concentrations at rest, i.e. Fq% < Germany, v stoc_k_ solution in DMSO, diluted 1:200 in final use), and

[Ca2+]rest which is 065 v [40]. Cortical [ng tran Fura-2 as an additional fluorochrome from Molecular Probes (Eugene,
i . -

) . OR). The injection vehicle was 5wnPipes/NaOH pH 7.0. All con-
sients achieved at [éao = 30 v by 1-2um AED [40] centrations indicated mean final concentrations seen by the cell.

or 50 mm caffeine [41] could be primarily due to mobi- Since trichocyst exocytosis occurs on a subsecond time scale [42,
lization from alveolar sacs, and secondarily to overlap-69] we included fast CLSM/f, ratio analysis of Fluo-3 loaded cells, to
ping c&"influx — an aspect to be analyzed here in moredetermine [C&"; transients generated by the different compounds
detail. Increasing [C%]o allows all trichocysts to un- tested. Parameters, as defined in Fig. 1, were used. Single wavelength

dergo exocvtosis and it areatly accelerates all steps of thFluo-3 measurements were evaluatellfgsatio, using a confocal laser
g y g y P gcanning microscope (CLSM, type Odyssey, from Noran, Bruchsal,

exo-endocytosis cycle triggered by AED [67]. Alveolar germany) with a fast opto-acoustic beam deflection system, all as
sacs are well established vast subplasmalemmal Ca Stadescribed [40, 41]. To demonstrate involvement of unspecific cation
age compartments [43, 48, 88, 89] which are physicallychannels in the plasmalemma, shown by?¥Mguenching of Fura-2
linked to the cell membrane at a distancé® nm [70].  [13, 21, 87], also used at 1G0, we applied\e,ciarion = 360 and 380
Among some features in common with muscle $R.( "™ WhileAemissionevaluated was=515 nm.
[23, 56, 85]) or ER ¢.f. [57, 74]) are the occurrence of
calsequestrin-like protein in alveolar sacs [68] and of agaqits
SERCA-type C&"-pump [28, 39].

We now address the following questions. While
lack of any role of IR[48] excludes dcpac-type mecha-  VOLTAGE-DEPENDENT Ca&* CHANNELS ARE NOT
nism, could a CICR- or a SOC-type mechanism be in-INVOLVED IN AED PRODUCED [Ca’']; TRANSIENTS
volved in our system? In fact, there has been some con-
troversy about this aspect Parameciumsome papers We analyzed [C&]; transients in wildtype (7S) and
arguing in favor of CICR [16, 37], some against it [19, pawn (d4-500r) cells in response to AED (Fig. 2). These
43, 48, 67, 70]. Since Cachannels in alveolar sacs can strains were compared since the latter has no ciliary volt-
be activated by caffeine [41], but not by ryanodine [48], age-dependent & channels [27]. As summarized in
we now tried 4CmC, the alternative, meanwhile well Table 1, (i) f/f, ratios rise faster and to a higher and
established agent used to mobilize®Com SR [30, 34, longer lasting plateau level in 7S cells and (i) the {ga
96]. So far we could not establish fBarameciuncells  transient decays more slowly than in pawn cells. We did
the precise interplay between £drom both potential not analyze in more detail any possible significance of
sources, C& and C&". We try to find out whether a this difference between the two strains. Yet the mere
CaSR may be involved in AED-stimulated trichocyst fact that both strains, each one with established exocy-
exocytosis. The situation is complicated becaBsea-  tosis competence [71], develop a clearly defined’[Ga
meciumpossesses a variety of plasmalemmafQzar-  transient in parallel to AED-mediated exocytosis, strictly
rying channels and because for most channels specifiargues against any essential role of voltage-sensitive
activators or inhibitors are not established in our systemCa"* channels in regulation of trichocyst secretion.

erials and Methods
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Fig. 1. Typical form of a cortical [C&1],

L5r transient during activation, with definitions used
in this paper. This example represents a CLSM
analysis of a Fluo-3 loaded 7S cell anteriorly

10 stimulated by 2um AED at [C&"], = 50 um.

N ,  time(s) | \ . \ Evaluated was ab wm broad cortical zone.
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5L 13 Fig. 2. Occurrence of a cortical [G4); transient

in both, 7S (left) and pawn cells (right). Fluo-3

loaded cells, anteriorly AED (M) stimulated at
2r 12 [C&"], = 50 uM. Note more pronounced [,

transient in 7S cells as compared to pawn cells,

1+ time (s) 41 and spillover into central regions in 7S. Values *

1 ! 1 L 1 SEM, N = 6.

0 1 2 3

Table 1. Cortical [C&"] transients {(f, ratio) in Fluo-3 loaded 7S and
pawn cells stimulated with AED at the posterior cell pole at{q.a=

In experiments with 7S cells (Fig. 3), we rapidly
increased [C&], in the medium to 10 m, in order to

50 pm . . .
look for any rapid change in [G4;. While we know

Characteristics of the Strain 7S Strain d4-500r that simply increasing [C4], to this level does not in-
cortical [C&"] transient ~ n = 6 n==6 duce exocytosis [67], for reasons analyzed in the Dis-

_ cussion, we do find a rapid cortical [E3increase (Fig.
Maximal f/f, 54205 3.9£0.9 3). By analyzing separately anterior and posterior cell
tuz Mise time (sec) 0.26£0.08 0.750.46 regions we also took into account the uneven distribution
Plateau duration (sec) 1.00+0.48 0.50+0.23 ) .
t,,, decay time (sec) 1.94 + 0.94 0.51 + 0.02 of some channels in the cell surface membrane, with

Exocytosis

Normal response

Normal response Mechanosensitive &achannels [59] and (6] carrying
Na" channels [75] enriched towards the anterior cell

Values +sem, n = number of cells analyzed.

PARAMECIUM CELLS REACT TO HiGH [C&®*], OR TO
EXTRACELLULAR La" By A [Ca®*"]; TRANSIENT—
EviDENCE OF ACaSR?

May there exist a CaSR iRarameciumcells? If so,

pole. (We emphasize that cells are not mechanically
triggered by the procedure used, while we wanted to
explicitly exclude even an auxiliary role for mechano-
sensitive C&" channels). Yet [CH]; responses were
practically the same in anterior and posterior regions.
Therefore, we exclude that activation of any of the two
nonuniformly distributed types of channels mentioned
would be involved in a primary reaction to AED. Clearly

could it potentially explain generation of AED-mediated exocytotic reaction to AED is not or only slightly differ-
[Ca?*]; transients? The prediction would be that an in-ent in the different cell regions.

stantaneous increase of [€h would cause a cortical

If a CaSR-linked mechanism would occur, one

C&* signal, just as one would expect also for extracel-would expect activation of cortical [E§; increase not
lular application of L&*, according to previous work only in response to AED or to high [€§,, but also in
with some mammalian cells [87].

response to extracellular Eaapplication [87]. Yet its
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Fig. 3. A cortical [C&"]; transient forms in 7S cells (top left: Fura Red loaded,; top right, bottom left and right: Fluo-3 loaded) in response to quick
application of [C4*], = 10 mm. Top left: conventional 2 Fura Red analysis; anterior £€g application. Top right: fast A CLSM Fluo-3 analysis;
anterior C&*, application. Bottom: Fluo-3 CLSM analysis of anterior (left) or posterior (right)’[T;dransients after G4, application at the
respective cell pole. Values ¢em, n = 3 (top left), 4 (bottom left) or 5 (bottom right).

use is problematic since Baican enter a cell and then though with some restrictions. (i) Internal €amobili-
per se yield a fluorescence signal [46, 63]. Furthermorezation may precede influx. (ii) Full exocytosis stimula-
La®** can affect also some other functions after entering dion occurs only by an extracellular Eaeffect and, to a
cell [66, 73]. Therefore, we have applied¥di) either  much larger extent, by the polycationic secretagogue,
quickly to the medium (Fig. 4), or, (ii) in controls, by AED, and either compound may activate a CaSR-type
microinjection into the cytosolnpt showi in order to  mechanism. (iii) Mere [CH]; increase by rapid appli-
compare the respective reactions obtained. In case (i) weation of high [C&"],, though causing a swift [C4];
received an intense, transient Fluo-3 signal, while in (ii)increase, does not entail any exocytosis. Could this be
we recorded a sustained signal since intracellulaf'La considered an argument against a CICR-type mecha-
will permanently activate, and thus block, Fluo-3. In nism? Would it be compatible with a CaSR involve-
controls with longer times of extracellular £aapplica- ment? Would one have to assume that a positive exocy-
tion, we registered a gradually developing sustainedotic response may be mediated only by?Cemobiliza-
Fluo-3 signal data not show)) as to be expected. Only tion from cortical stores as a primary step (instead of a
the reversible fluorescent signal occurring immediatelyCICR) and enforcement by coupling of a SOC-type
after brief extracellular L3 application will represent a mechanisms as a secondary step? As discussed below,
true [C&™]; signal which also is accompanied by tricho- the answer largely depends on whethef Galease from
cyst exocytosis (Fig. 4). cortical stores can be proved to occur. We therefore,
As an interim statement, arguments collected so fatried to substantiate this aspect in the following two
would largely be compatible with occurrence of a CaSR,ways.
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Fig. 4. Quick extracellular L& (1 mm) application
causes a local cortical [€4; transient (0.23 and 0.43
sec) and local trichocyst exocytosis seen in
transmitted light (0.26 and 0.46 sec) ia).(Fluo-3
injected 7S cells in [C&], = 50 uMm, anterior L&"
application (arrowhead, close to application pipette
seen at top left in figure series at the right side). Note
typical cell deformation upon [%a-induced explosive
trichocyst releasebj Example of a fast [CH];
registration by 4 CLSM, (b’) quantitative evaluation.
Values +sem, n = 4. Bars= 10 pm.
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Fig. 5. Simultaneous application of AED (&) and BAPTA (1 nm) by superfusion of a 7S cell at its anterior pole (arrow) causes AJQeansient
progressing laterally and centropetally. Data retrieved, at sites indicated in the schemeChgM Fluo-3 analysis.

Ca* MOBILIZATION FROM CORTICAL STORES 4CmC (Figs. 7-12, Table 3). This drug, applied at
[Ca®*], = 500 uM, yields a C&" signal at the site of
First we analyzed the G4releasing capacity of AED in application, where it also causes trichocyst exocytosis
presence of a very fast €achelator, BAPTA (Fig. 5). (Fig. 7). Under appropriate conditions, microdomains of
The rationale was to exclude more stringently a[Ca"]; increase can be observed (Fig. 8), as described in
CICR mechanism since we previously had used onlymore detail below. In a typical superfusion experiment
the slower C&" chelator, EGTA [40, 41]. When cells with 4CmC + 1 mv BAPTA (Fig. 9) the cortical signal
were superfused with a mixture of AED + BAPTA (1 may be dual. An interim decrease after formation of the
mm), we saw a clear G4 signal developing with some first peak may perhaps be due to internal chelation of
delay along the cell surface and, with even more delayCa* by Ca-binding proteins before 4CmC permeates
towards the interior of the cell. Since BAPTA is a much further and generates a second signal, perhaps by acti-
smaller molecule than AED and since it binds?Ca vation of ER, in more central regions. Time- and space-
within 0.5 ps time [35], we can reasonably assume com-dependent analysis of signal spread into deeper layers
plete complexation of C4, during stimulation. There- (Fig. 10) shows this intermediate attenuation at about 15
fore, the C&" signal originating in Fig. 5 from the cell to 17 um from the surface. Table 3 summarizes results
cortex must come from subplasmalemmal stores. Apachieved with different 4CmC concentrations at different
plication of BAPTA only does not induce any cortical or [Ca?*],. Clearly the effect achieved depends on the con-
central [C&"]; changes. When application of a mixture centration of each of the components present. With
of AED + BAPTA was repeated after 1 min (Fig. 6), [Ca&"], = 30 nv, more 4CmC is required to induce
C&" could no more be mobilized from stores. Evalua-exocytosis which evidently depends on a rapidly rising
tion in Table 2 (without C&",), in comparison to Table C&" signal.
1 (with C&*,), reveals that store mobilization may be In an attempt to find optimal conditions for demon-
just one component of the AED triggered<aignal and  strating involvement of a SOC-type mechanism we ex-
that this normally would be inforced by €ainflux. posed cells to 4CmC at low [E§,, with subsequent

Clearly [C&"]; signals are generated also at ftg = addition of high [C4"], (Fig. 11). If stores were emptied
30 nv, yet they are larger and they last longer at{Qa in the first phase at low [C4],, any signal intensifica-
= 50 uMm. tion upon readdition of high [C4], could demonstrate

To substantiate even further or to disprove our pre-occurrence of SOC. This is what we see in Fig. 11,
vious view of partial activation of exocytotic membrane showing an example of #8f, recording. In this figure,
fusion in our cells even at low [, [41, 67], we now  data points indicated at 0 sec fbf, recording corre-
additionally applied the novel G4 releasing agent, spond tot, in the scheme at top right, and to the large
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Fig. 6. Simultaneous application of AED (2v) and BAPTA (1 nm) by superfusion of a 7S cell at its anterior pole causes a corticAlJGeansient
which sweeps centropetally after the first application at 0 sec. When repeated after 60 seé hinfiaase can be registered, for reasons indicated
in the text. A CLSM Fluo-3 analysis.

Table 2. [Ca®"] transients generated in Fluo-3 loaded 7S cells in response to superfusion of the anterior cell pole by a mixture ofudED (2
BAPTA (1 mv)

Site of [C&*); Maximum f/f, ty,, rise time Duration of t,,» decay
measurement ratio (sec) plateau (sec) time (sec)
Cortical 2.7+0.7 0.16 £ 0.07 0.15+0.11 0.87+0.59
Central 23+11 0.39+0.15 0.33+0.15 1.52+0.78

Values +sp, n = 7.

Table 3. Cortical [C&"] transients and exocytotic response generated in Fluo-3 loaded 7S cells in response to 4CmC at difféignt [Ca

4CmC [Ca, Cortical [C&*); rise @/f,) Exocytosis

concentration (™)

(M), (N) Maximum ty rise Decay Recovery Contents Delay
(1-10 sec) time (sec) (30-60 sec) (>120 sec) release (sec)

100, (3) 5 x 10° 24+05 1.1+0.8 1.9+0.1 1.1+0.1 - -

500, (5) 5x 10° 4.3+0.8 0.8+0.2 3.6+0.9 1.2+0.1 + 0.5+0.2

500, (3) 3x 108 3.1+04 44+30 25+0.4 1.3£0.2 - -

1000, (5) 3 x 108 3.2+0.7 0.7+0.2 27+0.8 1.8+0.3 + 0.7+0.2

Values +sem, n = number of cells analyzed.

hatched column (below at bottom right) generated by =~ We then also explored a SOC-type reaction in a
adding [C&"], = 1073 m after store depletion by 2 min more conventional way, i.e., by application of SERCA
exposure to 4CmC. Remarkably the response is mucimhibitors (Table 4). Yet concentrations to be used par-
smaller with [C&"], = 1072 m in the absence of any ticularly with thapsigargicin were very high, similar to
previous 4CmC application (nonhatched column, bottonthose required with yeast [64], and much higher than
middle). (The outermost right part of Fig. 11 shows required for higher eukaryotic systems. CPA at a con-
[Ca®*); signal decay when [C4], is diluted to[110°® m centration of 50Qum, as usually applied also with other
within 11 sec.) In sum, 4CmC induces a SOC-type re-cells [18, 33, 90], causes a moderate corticad Gignal
action immediately following addition of [C4], = 10  at [C&"], = 30 nv, but a considerable signal intensifi-
M after previous store depletion under conditions ofcation by C&" influx at higher [C&"], (Table 4). When
Cé&”, chelation. compared with the effects of caffeine [41] and particu-
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Fig. 7. Local 4CmC application (arrowhead) gtcauses local transient [€%; increase and trichocyst) (exocytosis. Fura-2 loaded 7S cell in
[Ca?], = 50 uM, 500 um 4CmC. Note delay of reaction during permeation of the drug. 8at0 pm.

Fig. 8. AED (left) as well as 4CmC (right), applied at arrowheads at
[C&?*], = 30 nv, form microdomain C& signals (circles, squares)
lasting =33 msec, i.e., the time required to collect an image. Note
eventual local cell deformation in the course of vigorous trichocyst
expulsion. Bars= 5 pm.

larly of AED [40], [C&"]; values achieved are similar,
but rise time is much slower and [€% recovery values
are still higher after removing SERCA inhibitors. Thus,
Table 4 indicates slow and only partially reversible ef-
fects of the inhibitors tested on [€% homeostasis.

EVIDENCE OF [Ca?']; MICRODOMAINS IN PARAMECIUM

We looked whether AED or the new stimulant, 4CmC,
would generate [Cd]; microdomains. Fig. 8 shows two
such domains formed by AED and one by 4CmC at
[Ca"], = 30 nv, i.e., intensely fluorescent spotssD.5
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Jamn sarcolemma connection in striated muscle cells
0—o cortical [23]. This arrangement mediates CICR in vivo in car-
o—=0 central diac cells, though only in vitro in skeletal muscle cells
[56, 85, 91]. Also some neurons show such tight struc-
tural [58] or functional coupling [92] of cortical Ca-
stores to the cell membrane. Up to now caffeine was the
only “conventional” drug capable of releasingCérom
alveolar sacs [41]. Now we show the same effect, at the
usual submillimolar concentrations, with 4CmC - a
. much more specific activator of ryanodine-sensitivé Ca

‘© release channels in SRee Introduction). So far we
have most clear evidence against CICR involvement in
our system only from in vitro experiments [48, 102].

25k

20

) Alternatively, mobilization of C&" from cortical stores
tor by AED in absence of C4, can activate a large number
, , time (s), , L of exocytosis sites in vivo [19, 67]. Therefore, mobili-
0 1 2 3 4 10 zation of C&" from alveolar sacs is considered the pri-

. . _ _ ~mary step during AED stimulation. Rapid and intense
Fig. 9. Typical example of a [CH]; signal caused by anterior appli- cortical [C§+]i transients induced by increased fqa

cation of a mixture, 4CmC (50Qm) + 1 mv BAPTA, in a Fluo-3 P . . .
loaded 7S cell. Note formation of a dual signal peak in cell cortex andappllcatlon does not entail exocytosis, as we find. A

signal propagation into central regions. Remarkably the signal forms aP'10!! this would represent a stringent argument against
[Ca"], = 30 nv, due to cortical store mobilization. involvement of CICR in trichocyst exocytosis, but cor-

ollaries of this observation have to be dissected in more
detail, below.
pm diameter. During stimulation microdomains are vis-
ible for only 33 msec, i.e., they have a shorter life-time
than required for collecting an image. Eventually a cell\wicy EsTaBLISHED CHANNELS MAY DELIVER C&*
is deformed at such sites — an infallible indication of rrou THE OUTSIDE?
vigorous trichocyst ejection. We also ascertained for
4CmC occurrence of exocytotic membrane fusion by the
fluorescent dye, FM1-43d@ta not showh Based on results with d4-500r, we exclude ciliary
voltage-dependent &4 channels. Involvement of any
such channels in the somatic cell membrane [86] is also
EVIDENCE OF INVOLVEMENT OF UNSPECIFIC unlikely, mainly for the following reason. Increasing
CATION CHANNELS [C&®*],, while unexpectedly producing the well known
) ) ) “Ca paradox” inParameciumj.e., membrane depolar-
Finally, we determined, for AED and 4_Cm2C’_ involve- i ation with increased foreward swimming [53], causes a
ment of unspecific cation channels during“Cinflux, strong cortical C&' signal, but electrical depolarization
shown above to accompany store mobilization, by*Mn _ does not cause trichocyst release [20]. Similarly electri-
quenching of Fura-2 fluorescence. The rationale of Figeq| hyperpolarization does not induce exocytosis [20].
12is that Fura-2 has a é*asgnsmve emission at 380 "M Therefore, hyperpolarization-sensitiveXcehannels, as
Wh'fh decreases as [a’i increases. In contrast, the gpecified by Preston et al. [77, 78] are unlikely to be
Cazz;msensmve emission at 360 nm is quenched byinolved, particularly since their typical inhibition by
Mn=" when entering cells from the outside medium [13, g2+ or amiloride does not apply, e.g., to AED stimu-
21]. Since we see a cortical G:*g&gnal which is  |ated exocytosis and to electrical current responses to
quenched in presence of N this standard assay aAgp [20]. Since we always observe, with AED or with
clearly indicates involvement of unspecific cation chan-4CmC’ equal [C&], transient formation and exocytotic
nels during AED or 4CmC stimulation, respectively.  reaction over the entire cell surface, we also exclude
anteriorly enriched mechano-sensitive ?Cahannels
[59] or Ca*-conducting N& channels [82]. Still to be
considered are unspecific cation channels of the type
described ifParameciunby Saitow et al. [84]. The con-
No EviDENCE oF A CICR-TYPE MECHANISM ductance induced by AED or 4CmC does carry?¥jras
we show in Fig. 12. Channels of this type are unspecific
Alveolar sacs are tightly coupled to the cell membrane atation channels considered to participate in SOC-type
a distance of(115 nm [70] and, thus, remind SR- mechanisms [54], as discussed below.

Discussion
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Fig. 10. Time-space resolved signal development at different distances from the cell surface under conditions specified in Fig. 9.

CaSRAND/OR SOCIN PARAMECIUM? the trigger agent has no such effect, thus explaining our
current results with quick application of 2% (see be-
In the context discussed above with regard to unspecifitow). For the intriguing effects of L¥ in SOC analysis,
cation channels in the cell membrane, CaSR-coupledee review by Lewis [49].
conductances are activated by lanthanides, liké*®d Similar CaSR-related activities are achieved by ex-
La®*". In some higher eukaryotes, lanthanides not onlyogenous polyamine stimulation [25, 79] which also in-
cause C& release from IRinsensitive, ryanodine- duces exocytosis in a variety of cell types, like in neu-
sensitive stores, but they also activate, from the outsideional and in pituitary cells [87] which also contain cor-
unspecific C&" conducting channels [1, 9, 10, 24, 80, 94, tical Ca stores [92]. Different types of CaSR are
100]. However, due to different extra- and intracellular recognized to be widely distributed, e.g., in leukocytes,
effects of lanthanides, global effects finally observedpancreatic cells or CNS neurons [11, 93, 100], let alone
may greatly vary depending on cell type and protocol“professional” C&*-regulating cell types, like osteocytes
used. InParamecium prief extracellular L&" applica- [98, 102]. In some systems, polyamines can directly ac-
tion produces a cortical [G4; transient (Fig. 4) and tivate different plasmalemmal channels, including’Ca
such an effect has been shown in anterior pituitary cellshannels [4, 25, 95, 97, 103]. If this would apply to
to be due to activation of a CaSR [87]. Parameciumunspecific cation channels of a similar type
Theoretically this should also hold for high [€%,  as described by Saitow et al. [84] could theoretically be
application. Though yielding a [¢]; transient with the  directly activated by AED, even if a CaSR would not be
usual characteristics, just as obtained witf'Lar AED,  involved. However, the capability of AED to produce a
this entails no exocytosis. The response is the same a®rtical C&* signal again points toward a mechanism
with veratridine stimulation at high [G4, [7]. We as- involving a CaSR to which an unspecific cation channel
sume exocytosis inhibition by too long exposufél (  activity could be connected.
min) to high [C&"],, i.e., 10 mu, and we attribute this By implication, a CaSR-type function has been pos-
effect to the well established membrane stabilizing effectulated previously already for ciliated protoz&arame-
by C&* [22] caused by rigidification of membrane lipids cium and Tetrahymenathough under different designa-
in the course of equally well established?Ganediated tion. Hennessey et al. [29], using lysozyme (fl0),
lipid phase transition [61]. In this context one can easilyconfirmed that highly positively charged compounds in-
explain absence of exocytosis (membrane fusion) after Huce exocytosis, just like some other polycations with
min application of high [C&],, in despite of formation  sufficiently densely packed cationic groups [72]. How-
of a regular [C&"]; transient. As previously shown [67], ever, lysozyme may also affect ciliary voltage-dependent
high [C&*],, applied for=0.5 sec or simultaneously with Ca&* channels since it acts as a repellent at fihes
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Fig. 11. Deprivation of C&* from stores in Fluo-3 injected 7S cells by 4CmC preincubation (2 min) &[ga= 1077 m induces massive G4
influx upon addition of 10° m C&*,. Scheme at top right: Mobilization of €afrom stores by 2 min 4CmC preincubation in presence of BAPTA
was followed by readdition of [Gd], = 1072 m, before [C&*], was allowed to drop to I8 m during a subsequent time of 11 sec. Bottom left:
example of a [C&Y]; transient generated fyt(as indicated in scheme at top right). Bottom right: CorticaP{;assignal amplitudes (hatched columns:
with 4CmC, clear columns: without 4CmC preincubation) were obtained &JCa 10° m (left column pair), after adding [G&], = 103 m
(middle column pair), or after decay of [E3, to 10°® m (right column pair). Values em, n = 4 (hatched columns) or 2 (clear columns).

Table 4. [Ca?"]; transients generated in Fluo-3 loaded 7S cells by application of inhibitors of the SERCA-t§pe@ap

Inhibitor [ca, n Cortical [C&*]; transient
concentration (™)
Rest Maximum Rise time Recovery Decay time
(nm) (nm) (sec) (nm) (sec)
Thapsigargicin, 10Qum 5x10° 6 101 +19 225+11 42 +14 147 £21 20-60
Cyclopiazonic acid, 50@um 5x10° 4 117 +£17 680 + 81 207 375+ 68 20-60
Cyclopiazonic acid, 50@um 3x 108 3 44 + 4 133+7 16+4 89+11 20-60

Values t£sem, n = number of cells analyzed. For comparison with data achieved with AED and caffeine, respectively, see refs. [40, 41] and text.

lower concentration than required for exocytosis [29,exert its “classical” function by inhibiting IPmediated
38], i.e., millimolar vs. micromolar, as required with C&" release, although we have no evidence of the latter
AED [72]. mechanism irParameciuni48]. In pilot experiments, 2
These effects of lysozyme can be abolished by themin extracellular application of neomycin before AED
aminoglycoside, neomycin, 1 [29]. However, any stimulation inhibits trichocyst exocytosis. This may oc-
effects of this drug are difficult to judge since neomycin cur from the inside, though unrelated to;lIFOne possi-
can permeate into cells within 1-2 min [55, 65] and thenbility is inhibition by neomycin of communication be-
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Fig. 12. Evaluation of cortical regions of Fura-2 loaded cells shows$™@aediated fluorescence decrease (indicating®{zdncrease), but
Mn?*-mediated fluorescence quenching, indicating involvement of unspecific cation channels in the cell membrane, in responseX@iED (
4CmC () at the wavelengths indicated. For AEB) fve used nd9-28°C cells, known to yield similar fCla signals as 7S cells, but without cell
dislocation (due to vigorous trichocyst expulsion in 7S).4j 7S cells were exposed to 4CmC. Concentrations used wéfg €a50 um, +MnCl,

= 5 mv, AED = 2 pm (left), 4CmC = 500 pm (right).

tween cell membrane and cortical stores, as found ir= 100 M, [29]). Neomycin can also activate CaSR in
muscle cells [99]. Would our conclusions be compatiblekidney cells [81] and C& influx in liver cells (devoid of
with previous extensive experiments by other groups apvoltage-dependent Gachannels), as shown by Hughes
plying neomycin to ciliates? IRParameciumneomycin et al. [32]. However, as in our system, neomycin does
also inhibits ciliary voltage-dependent €acurrents not activate CaSR in pancreatic cells [10]. Furthermore,
[26], an effect clearly unrelated to exocytosis (Fig. 2).one has to differentiate more stringently between extra-
The “receptor potential” ascribed by Hennessey et aland intracellular effects occurring during neomycin ap-
[29] to activation of a “lysozyme receptor” may be in- plication. As stated, neomycin can permeate into cells
terpreted as an effect on ciliary €achannels since we, when applied for min [55, 65]. It then can block some
too, have recognized occasional brief depolarization ofntracellular functions, like communication between cell
some cells in response to AED, but only in connectionmembrane and SR in striated muscle [99] or in smooth
with occasional occurrence of ciliary reversal [20]. Our muscle cells [65], as it could in our unpublished results
interpretation agrees with activation of widely different with Paramecium.Particularly the multiple effects of
plasmalemmal cation channels by exogenous polyamingseomycin, e.g., in pyramidal neurons [50], restrain us
[4, 36, 95, 97, 103] and its inhibition by neomycin, or from any further interpretation of any effects seen in
with activation of a CaSR of a broad-range activity by ciliates. Along these lines it would be desirable to fur-
polyamines. Itis also unlikely to have a different recep-ther characterize the “lysozyme receptor” isolated by
tor for AED (EC oo = 1 M, [72]) or lysozyme (EG,,  Kuruvilla and Hennessey [45]. Interestingly in osteo-
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clasts an extracellular domain of the CaSR has been
demonstrated to resemble in part a ryanodine receptor2
[101].

[Ca®']; MICRODOMAINS AND POSSIBLE SITE-DIRECTED s
Ca" FLux
In muscle cells, C& imaging by fluorochromes allowed 4.

to observe [C&]; microdomains originating from SR
and to follow their temporal development by rapid line
scans. Examples of values thus determined for size and
duration are about 0.pm/5-20 msec [14], 1.4.m/30
msec [17] and 1.,wm/13 msec [47]. Although all values ¢
depend on the cell and assay conditions used, of course,
they are well comparable to the microdomains we see in 7.
response to AED or 4CmcC (Fig. 8). While their duration
in Parameciumcannot be easily determined by line
scans, their lifetime must be33 msec, i.e., below the
time required for image recording. Our present data are o
also compatible with the range of the lifetintg,{ = 21
msec) of C&"-activated “minimal” currents occurring in
parallel to exocytosis of single trichocysts [19]. Though
we could also not yet determine any more precise rela-
tionship between microdomain formation and trichocyst
release sites, eventual simultaneous local cell deforma-
tion strongly suggests such a correlation. Similarly, we

5.

10.

did not analyze induction of membrane fusion in re- 12,

sponse to 4CmC and AED + BAPTA application, re-
spectively. This may be inferred, however, from similar
experiments with caffeine [41] and AED + EGTA [67].

Conclusions

14.

Our present data and those achieved by others with poly-
cationic compounds appear compatible with a CaSR,
connected to a SOC-type mechanism, as we postulate

throughout this paper on the basis of widely different 15 : : _
16. Cohen, J., Kerboeuf, D. 1993. Calcium and trichocyst exocytosis

evidence. Mobilization of C& from alveolar sacs has
been ascertained by application of 4CmC. From the
[Ca?"]; microdomains seen during AED or 4CmC stimu-
lation we derive the possibility of a site-directed“Ga
flux at sites where the alveolar sacs system is interrupted
to accomodate a trichocyst. Characterization of molecu-
lar components involved in AED stimulation remain
open so far.
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